Modification in Factor

Zack 11/1/2013
• Modification of Cholesky Factor

• Modification in Newton method
Modification of Cholesky Factor

• Consider the case where a symmetric positive definite matrix A is modified by a symmetric matrix of rank 1.

$$\bar{A} = A + \alpha zz^T$$

• Assuming that the Cholesky factors of A are known: $A = LDL^T$, we wish to determine the factors,

$$\bar{A} = \bar{L}\bar{D}\bar{L}^T$$
• $\tilde{A} = A + \alpha zz^T = L(D + \alpha pp^T)L^T$

$\Rightarrow D + \alpha pp^T = \tilde{L}\tilde{D}\tilde{L}^T$
Method 1: Using Classical Cholesky Factorization

\[
\begin{pmatrix}
1 & \tilde{l}_{21} \\
\tilde{l}_{21} & \tilde{L}_{22}
\end{pmatrix}
\begin{pmatrix}
\tilde{d}_1 \\
\tilde{D}_2
\end{pmatrix}
\begin{pmatrix}
1 & \tilde{l}_{12} \\
\tilde{L}_{22}^T & \tilde{D}_2^T
\end{pmatrix}
=
\begin{pmatrix}
d_1 \\
D_2
\end{pmatrix}
+
\begin{pmatrix}
\alpha p_1^2 & \alpha p_1 p_2^T \\
\alpha p_1 p_2 & \alpha p_2^T
\end{pmatrix}
\]
• $\tilde{d}_1 = d_1 + \alpha p_1^2$

• $\tilde{l}_{21} = \frac{\alpha p_1}{\tilde{d}_1} p_2$

• $\tilde{L}_{22} \tilde{D}_{22} \tilde{L}_{22}^T = D_{22} + \alpha p_2 p_2^T - \tilde{d}_1 \tilde{l}_{21} \tilde{l}_{21}^T$

 $$= D_{22} + (\alpha - \frac{\alpha^2 p_1^2}{\tilde{d}_1}) p_2 p_2^T = D_{22} + \frac{\alpha d_1}{\tilde{d}_1} p_2 p_2^T$$
\[\tilde{d}_1 = d_1 + \alpha p_1^2 \]

- If \(\alpha < 0 \) and \(\tilde{A} \) is near to singularity, it is possible that rounding error could cause the diagonal element \(d \) to become zero or arbitrarily small. In such cases, it is also possible that the \(d \) could change sign.
• Method 2:

\[\tilde{A} = LD^{1/2}(I + \alpha vv^T)D^{1/2}L \]

\[I + \alpha vv^T = \tilde{L}\tilde{L}^T \text{ (diagonal elements in } \tilde{L} \text{ is not 1)} \]

\[\tilde{A} = LD^{1/2}\tilde{L}\tilde{L}^T D^{1/2}L \]
\[I + \alpha vv^T = \tilde{L}\tilde{L}^T \]

\[
\begin{pmatrix}
 l_{11} & l_{12} \\
 l_{21} & L_{22}
\end{pmatrix}
\begin{pmatrix}
 l_{11} & l_{12} \\
 L_{22}^T
\end{pmatrix} =
\begin{pmatrix}
 1 + \alpha v_1^2 & \alpha v_1 v_2^T \\
 \alpha v_1 v_2 & 1 + \alpha v_2 v_2^T
\end{pmatrix}
\]

\[l_{11} = \sqrt{1 + \alpha v_1^2} \]

\[l_{21} = \frac{\alpha v_1}{l_{11}} v_2 \]

\[L_{22}L_{22}^T = I + \alpha v_2 v_2^T - l_{21}l_{21}^T = I + \left(\alpha - \frac{\alpha^2 v_1^2}{l_{11}^2} \right) v_2 v_2^T = I + \frac{\alpha}{l_{11}^2} v_2 v_2^T \]
Modification in Newton method

• Newton method for approximating a root to $f(x)=0$ is given by the iteration:

$$ J(x_k)(x_{k+1} - x_k) = -f(x_k) $$

• We attempt to approximate the Jacobian using rank one corrections:

$$ J'(x_{k+1}) = J(x_k) - u_k v_k^T $$
$J'(x_{k+1})$ is chosen so that:

$$J'(x_{k+1})(x_{k+1} - x_k) = f(x_{k+1}) - f(x_k)$$

$$\rightarrow -u_k v_k^T (x_{k+1} - x_k) = f(x_{k+1})$$
\[-u_k v_k^T (x_{k+1} - x_k) = f(x_{k+1}) \]

- Q1: how to keep sparsity?
- Q2: how to keep stability?
Thank you